
calle@lnbits.com @callebtc

Cashu A Chaumian ecash
protocol for Bitcoin

Blinding custody
Two main risks of custodial Bitcoin services:

1) Custodial risk

2) No privacy

Problem: A custodian must know your
transaction history, balance, payments in and
out of the system.

Solution: An open and interoperable
Chaumian Ecash system.

We use custodians everywhere.

They infringe on our privacy
especially with small and frequent

payments.

Alice

Bob

Carol

I'm Alice (id=28bd2f...)
Send 1 BTC to Carol (id=28bd2f...) My balance updated!

Requires Alice and Bob have an
account

Classical custodianship

Does Alice have a
balance of ≥ 1 BTC?

Ledger

Alice -1 BTC
Carol +1 BTC

Dave -0.5 BTC
Alice +1 BTC

✓

The custodian MUST know

your user ID, your balance, and your
transaction history

to function.

Chaumian
ecash

Chaumian ecash

Alice

Bob

Carol

Send 1 BTC to
Carol

Redeem 1 BTC
for 1 BTC

Check my signature on this token and issue a new token

seen ecash

I have never seen
this token before.

✓

Properties of Ecash

UNTRACEABLE
The mint does know very little about the financial activity of its users.  

BEARER TOKEN

The data is the money. Ecash can be embedded in data packages.  

PUSH UX

Payer "throws" money at receiver. With an online inbox, can receive while offline. 

PROGRAMMABLE

Complex spending conditions for ecash enforced by the mint.

Cashu

Cashu Lightning wallets

eNuts.cash 
(iOS Testflight & Android)

minibits.cash
(Android)

nutstash.app
(PWA)

cashu.me 
(PWA)

http://cashu.me

Mints

Nutshell

LNbits

cashu-rs

Moksha

Wallets

Nutshell

Feni

Nutstash

Cashu.me

eNuts

Cashcrab

Moksha

Minibits

Integrations

Snort

Amethyst

Redeem

Spacenut

New use cases

X-Cashu

ProxNut

Nutminer

Katzenpost

Implementations

More info: https://docs.cashu.space

https://docs.cashu.space

Milestones

✓ Bitcoin Lightning integration

✓ Deterministic ecash derivation and seed phrase backups

✓ Programmable ecash with complex spending conditions (P2PK, multisig)

✓ Proof-of-Liabilities scheme for public auditability of ecash mints

✓ Receiver-offline transactions that are verifiably final

✓ Libraries in Python, Rust, Golang, TypeScript

✓ Mobile wallets for iOS, Android, and PWA

Since Q3 2022

Blind
signatures

Blind signatures

Carbon paper

Blind signatures allow you to sign a message that you have never seen and
to verify your signature once the message is revealed to you.

Blind signatures

Alice Bob

Alice blinds secret message

Encrypt secret (blind)
Sign

✓ ✓
Bob returns blind signatures

Decrypt signature (unblind)

Alice provides proofs

Verify

==

Spending

The signature is unlinked from the
ecash token.

==?

The mint does not know which ecash
token it is signing.

Cashu on
Lightning

Alice Bob

Sign

Alice Bob

Receive via Lightning (/mint)

Pay via Lightning (/melt)

pays Lightning invoice of Bob. provides new tokens in return.

provides tokens. pays Lightning invoice of Alice and burns tokens.

Cashu on Lightning
Pay this LN

invoice.

Pay this LN
invoice for me.

Mint Mint

User to user

(email, text,

nostr, ...)

User to mint

(https, nostr, ...)

Mint to mint

(Lightning)

Mint to world

(Lightning)

Lightning is the connecting tissue
Lightning payments Ecash payments

Mint

Programmable
ecash

We can attach spending conditions to ecash. Spending conditions are

enforced by the mint.

Like Bitcoin UTXOs:

To spend locked ecash, users must provide a valid unlocking witness.

Example: Pay to Public Key (P2PK).

Programmable ecash

Alice Carol

Lock 1 BTC to
38Ai3kaW...

Send money to:
38Ai3kaW...

Generates an unlocking key (private) and a
P2PK "address" (public).

Locks tokens with P2PK.

Bob

I see a lock, I need a
valid signature for that.

<sig> <pubkey> OP_CHECKSIG

✓

Pay to public key (P2PK)

Post ecash publicly 
Example: Zap nostr posts with ecash.

Receiver can remain offline  
"I see the ecash locked to me, that's enough."

Enables (very) high-frequency payments 
Receiver can defer round trips to mint to the future.

Pay to public key (P2PK)

Atomic ecash swaps 
Example: Exchange ecash between mints.

Lightning submarine swaps  
Atomically swap ecash for a successful Lightning payment

Route Lightning payments? 
Lightning HTLC routes can "shortcut" through an ecash system

Hash timelock contracts (HTLC)

X-Cashu

HTTP 402: Payment required

GET /api

No! 402! Get some ecash!

User attaches ecash directly to request

Server can not know which user paid how much.

<ecash>! GET /api

Nice ecash! <response>

PROXNUT
Web widget for privacy-preserving paywalls with Cashu

Onion-routed Ecash
Use Tor or Katzenpost privacy services for a fee

Problem: Which payment method is fast and private enough?

Idea: Add ecash payment inside the request itself.

Idea2: Wrap multiple payments in layers of an onion.

WIP integration in Katzenpost (mixnet)

Send onion package
with wrapped ecash

Actual data

package

We're looking for contributors

Python, Rust, TypeScript, Golang 
UX Design, Documentation, Community

ecashhackday.github.io

https://cashu.space

Try Nutstash wallet

https://nutstash.app/

May the nut be with you 🧡 
 

@callebtc

https://cashu.space

